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Abstract
One of the most commonly known genes involved in chronic diffuse liver 
diseases pathogenesis are genes that encodes the synthesis of glutathione-S-
transferase (GST), known as the second phase enzyme detoxification system that 
protects against endogenous oxidative stress and exogenous toxins, through 
catalisation of glutathione sulfuric groups conjugation and decontamination of 
lipid and deoxyribonucleic acid oxidation products. The group of GST enzymes 
consists of cytosolic, mitochondrial and microsomal fractions. Recently, eight 
classes of soluble cytoplasmic isoforms of GST enzymes are widely known: α-, ζ-, 
θ-, κ-, μ-, π-, σ-, and ω-. The GSTs gene family in the Human Gene Nomenclature 
Committee, online database recorded over 20 functional genes. The level of GSTs 
expression is considered to be a crucial factor in determining the sensitivity of 
cells to a broad spectrum of toxins. Nevertheless, human GSTs genes have 
multiple and frequent polymorphisms that include the complete absence of the 
GSTM1 or the GSTT1 gene. Current review supports the position that genetic 
polymorphism of GST genes is involved in the pathogenesis of various liver 
diseases, particularly non-alcoholic fatty liver disease, hepatitis and liver cirrhosis 
of different etiology and hepatocellular carcinoma. Certain GST allelic variants 
were proven to be associated with susceptibility to hepatological pathology, and 
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Core Tip: Current review provide data regarding impact of genetic polymorphism of 
glutathione-S-transferase (GST) genes in the pathogenesis of various liver diseases, 
particularly non-alcoholic fatty liver disease, hepatitis and liver cirrhosis of different 
etiology and hepatocellular carcinoma. Certain GST allelic variants were proven to be 
associated with susceptibility to hepatological pathology and correlations with the 
natural course of the diseases were subsequently postulated.
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INTRODUCTION
Glutathione-S-transferases (GSTs) are group of phase II detoxification enzymes that 
catalyses the conjugation of glutathione (GSH) to a variety of endogenous and 
exogenous electrophilic compounds. It is without doubts that phase I enzyme reaction 
catalyses the incorporation of a functional group to a foreign compound, resulting in 
the formation of an intermediate metabolite. However, many of intermediates contain 
high potent chemical groups that can react with different cellular components 
including DNA, proteins and lipids[1,2]. This presence of intermediate metabolites can 
lead to multiple adverse health effects. Intermediate substances undergo phase II 
metabolism to form highly hydrophilic and less chemically active compounds, 
facilitating their excretion through bile or urine. Moreover, before being eliminated 
from the body, an extraneous compound can directly take part in phase II bypassing 
phase I detoxification. Phase II enzymes deactivate and detoxify foreign compounds 
unlike phase I enzymes which serves as activation metabolism, and therefore referred 
to as detoxification enzymes[3-5]. The aim of the current review was to overview up-
to-date data and sum up results of own investigations regarding the distribution of 
GST genes polymorphisms, possible mechanisms of their involvement in the processes 
of desintoxication, drugs metabolism and cancerogenesis, and their role in the natural 
course of various liver diseases.

GSTs are presented by the cytosolic and membrane-bound microsomal super-family 
members. The groups of microsomal GSTs are structurally distinct from the cytosolic 
enzymes as they are rather homo-and heterotrimerise than dimerise in order to form a 
solitary active site. Microsomal GSTs are known to be the primary players in the 
endogenous metabolism of certain important substances like prostaglandins and 
leukotrienes. In contradistinction to microsomal GSTs, cytosolic GSTs are highly 
polymorphic and can easily be divided into eight sub-classes: α, μ, ω, π, θ, ζ, σ-, and ω-. 
The π and μ classes of GSTs play a regulatory role in the mitogen-activated protein 
kinase pathway participating in cellular survival and death signaling via protein-
protein interactions with c-Jun N-terminal kinase 1 (JNK1) and apoptosis signal-
regulating kinase (ASK1). JNK and ASK1 are in turn activated in response to cellular 
stress[6-8].

GSTs are broadly distributed in the living world, from single cell organisms like 
bacteria to various plants, animals, and humans. Plant GSTs include the φ, τ, θ, ξ and λ 
classes; the θ and ξ have analogues in animals, too. Moreover, the ξ and θ classes are 
numerous in non-vertebrate animals. Advocating that the ancestral progenitor for 
mammalian GSTs, probably arose from the θ class GSTs based on significant 
homology between the θ class GST and a dichloromethane dehalogenase enzyme from 
the prokaryote methylobacteriaceae, belonging to the genus of rhizobiales which is 
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known to be able to undergo genetic transformation and become competent for DNA 
uptake close to the end of the exponential growth phase[9-12].

The review of the GSTs gene family in the Human Gene Nomenclature Committee 
(HGNC), online database, shows 23 (as for beginning of 2021) functional genes 
contained within the group[13], which is a minor upgrade from the last decade, when 
there were only 21 of such genes reported. However, the number of subfamilies varies 
from 16 to 26 in different sources, and some genes of the group were determined as 
encoding membrane-bound enzymes having GST-like activity, but these genes are not 
related to the GSTs gene family evolutionarily. These genes include GST-κ1 
[glutathione S-transferase kappa 1 (GSTK1), GST13, HGNC: 16906, Chromosome 
7q34], and microsomal glutathione S-transferase 1 (MGST1, Chromosome12p12.3) 
microsomal glutathione S-transferase 1-like 1 (prostaglandin E synthase-PTGES, 
MGST-IV, PIG12, MGST1-L1, TP53I12, HGNC: 9599, Chromosome 9q34.11), 
microsomal glutathione S-transferase 2 (MGST2, MGST-II, HGNC: 7063, Chromosome 
4q31.1), and microsomal glutathione S-transferase 3 (MGST3, GST-III, HGNC: 7064, 
Chromosome 1q24.1). The known human GSTs gene family consists of six subfamilies-
α (GSTA-alpha), μ (GSTM-miu), ω (GSTO-omega), π (GSTP-pi), θ (GSTT-theta) and ξ 
(GSTZ-zeta)[14].

Probably, naming of GSTs genes can cause confusion, because both GSTW and 
GSTO names are similarly used for GST omega (ω) subfamily marking, and GSTT or 
GSTQ are concurrently used for GST theta (τ) subfamily listing in different sources. 
The reason for this lack of certainty originates from the HGNC’s rules. Moreover, quite 
similar nomenclature problems were reported with the mouse GST genes[14,15].

Nonetheless, while only human GSTs are of valid clinical significance, other GSTs 
genes are of notable interest as this may explain both the connections and 
developments of human GSTs. The soluble GSTs can be subdivided into the cytosolic 
and mitochondrial forms, only GSTκ is exclusively mitochondrial, while GTSA1, 4, 
GSTM1 and GSTP1 encode both cytosolic and mitochondrial forms. The rest of the 
GSTs genes encode cytosolic proteins only. Note worthily, a vast number of GSTs were 
first identified in non-mammalian organisms, and were later recognised in humans 
and mammals[16-18], however most of the mammalian GSTs have been extensively 
studied and classified according to commonly assented criteria.

NON-HUMAN GSTS
Reports concerning plant GST enzyme revealed its involvement in catalysing the 
detoxification of the herbicide atrazine by conjugation to the endogenous γ-L-
glutamyl-L-cysteinyl-glycine in sorghum and maize plants, which initiated a research 
that focuses on the detoxification of various herbicides and other toxic xenobiotic 
compounds in plants[19]. GSTs exhibit catalysis of the conjugation between various 
xenobiotics with electrophilic centres and the nucleophilic GSH, tagging the xenobiotic 
for vacuolar sequestration. The resulting γ-L-glutamyl-L-cysteinyl-β-alanine 
conjugates were much less toxic and more water-soluble than the original xenobiotics. 
It was shown that multiple plant GSTs participate in antioxidative protection due to 
their glutathione peroxidase activity[20].

The floral GSTs are mostly cytosolic and can represent up to 2% of soluble proteins. 
They have the ability to manifest auxin-inducibility and have ligandin function as well 
to participate in auxin transport. GSTs play a significant role during the normal 
metabolism of plant secondary products like anthocyanins[21]. The understanding of 
GSTs' role in endogenous floral processes and metabolic substrates had been still far 
from complete in contrast to the vast knowledge collected about their detoxification 
function[20,22].

Likewise, in human genome, floral GSTs enzymes are encoded by large gene 
families. The genome of the model plant Arabidopsis thaliana harbors 54 GST genes, 
which are grouped into seven distinct classes in plants. The well-studied large GSTF 
and GSTU classes are specific to plants, whilst the smaller GSTZ and GSTT classes 
exist in animal and human tissues. Lesser data is obtainable about the three outlying 
minor classes including GSTL, dehydroascorbate reductases, and tetrachloro-
hydroquinone dehalogenase[21,23].
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HUMAN GSTS
Human GSTs genes have multiple and frequent polymorphisms, including the 
complete absence (up to 20%-50% in some groups and populations) of the GSTM1 or 
the GSTT1 gene. The prevalence of the null genotype of GSTT1 and GSTM1 genes are 
heterogeneous amongst different ethnic populations. The GSTT1 deletion is found in 
20% of Caucasians and 80% of Asians[24]. While GSTM1 zero genotype is detected in 
38%-67% of Caucasian individuals, 33%-63% in East Asians and 22% to 35% in 
Africans and African Americans[25]. The substitution of adenine for guanine in 
nucleotide position 313 in the GSTP1 gene leads to a reduction in the GST enzymatic 
activity which plays a significant role in the development of various diseases[26].

Following deficit in evident GSTs activities may lead to impaired detoxication of 
environmental substances, like toxins, carcinogens or drugs that may consequently 
generate clinically worth problems in patients lacking these genes[14,27-29].

GSTA, GSTM, and GSTP are over expressed in rat model of hepatic neoplasms 
(preneoplastic nodules) and the increased levels of these isoenzymes are assumed to 
provide the multidrug-resistant phenotype observed in these lesions. The majority of 
human tumors and human tumor cell lines express significant amounts of GSTP. The 
mechanisms responsible for over expression of GSTs, implicate transcriptional 
activation, stabilization of either messenger ribonucleic acid or protein, and gene 
amplification. In humans, remarkable interindividual differences are present in the 
expression of GSTA, GSTM, and GSTT. However, the exact molecular basis for the 
variation in GSTA is not known; missing of certain GSTM and GSTT classes can be 
attributed to deletion of the GSTMI gene in 50% of the population and deletion of the 
GSTTI gene in 16% of the population. The biological consequences of failure to express 
hGSTMI or hGSTTI protein can include higher susceptibility to some types of 
malignancies including skin, colon, bladder, and possibly lung cancer[10,30].

The level of GSTs expression is considered to be a crucial factor in determining the 
sensitivity of cells to a broad spectrum of toxins. The most abundant mammalian GSTs 
are the GSTA, GSTM and GSTP, however the biological control of these families is 
complex as they exhibit species-, age-, sex-, tissue-, and tumor-specific patterns of 
expression. Moreover, GSTs as shown above are regulated up and down by a broad 
spectrum of xenobiotics and drugs, with a significant number of these substances 
occurring naturally as non-nutritional components in modern food. It is obvious that 
humans are exposed regularly to such compounds[10].

Majority of chemical compounds, acting as GSTs inducers or inhibitors, have effect 
on transcriptional activation of GSTs genes through either antioxidant-responsive 
element, xenobiotic-responsive element, GSTP enhancer l, or glucocorticoid-responsive 
element[31,32].

The probability of GSTs is regulated in vivo by reactive oxygen species which is 
based on evidence that is not only but some of the most potent. GSTs inducers are 
capable of generating free radicals by redox-cycling, but hydrogen peroxide has been 
shown to strongly induce GSTs in plant and mammalian cells. An induction of GST by 
reactive oxygen species would appear to represent an adaptive response as GSTs 
detoxify some of the toxic peroxide-, carbonyl-, and epoxide-containing metabolites 
produced within the cell during oxidative stress[33-35].

Several functional studies of individual GSTs showed that they can positively 
contribute to host resistance against various microorganisms, whereas some 
physiologic mechanisms undergo further studying. Notwithstanding, the elevated 
total GST enzyme activities and notable accumulation of multiple GST transcripts and 
proteins was often observed in numerous host-pathogen interactions[23,36]. GSH is 
the most important non-protein thiol compound in several organisms and plays an 
important role in signaling and host defense reactions in infection. GSTs' participation 
in antioxidative react together with the crucial cellular antioxidant GSH in order to 
eliminate lipid hydroperoxides that accumulate in infected tissues, is clearly their 
distinguishable function[37-39].

Substantiation of GSTs genes from some commensals and parasites that may have 
immunomodulatory effect towards the immune system is growing, based on the 
involvement of separate profiles of cytokine gene transcription and different patterns 
of cell growth. Both antioxidants and oxidative stress manifest prompt transcription 
effect on many of the GSTs genes, which leads to increased protection of the cell 
against insult caused by environmental chemicals and drugs[40-42].

Possible interactions between host and microorganisms may result in three different 
ways: resistance gene (R-gene) mediated resistance, basal resistance and virulence. The 
first one (R-gene mediated), hypersensitive-type resistance is based on a specific 
interaction of a bacterial effect or gene product with the R-gene of the host organism. 
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R-gene mediated type of resistance is commonly corresponded with the localised cell 
death in infected host. It is unspecific, in case of basal resistance recognition; opposite 
to the R-gene mediated cell death, as genetically alien organisms are recognised based 
on their common molecular patterns. Induction of basal resistance is not associated 
with perceptible symptoms, in contrast to the hypersensitive-type R-gene mediated 
cell death. Poor host defense results in virulence[32,43].

Several members of the cytosolic GSTA, GSTM, GSTP, GSTT, microsomal 
transferases MGST2 and MGST3, are up-regulated by a wide spectrum of foreign 
compounds including but not limited to fumaric acid, thiazolidinediones, dexame-
thasone, phenobarbital, β-naphthoflavone, oltipraz, sulforaphane, coumarin, etc.[42]. 
The mechanism explaining this gene expression induction includes the aryl 
hydrocarbon receptor, and rostane receptor, the Pregnane X receptor, nuclear factor 
erythroid 2-related factor 2, CAATT/enhancer binding protein-β, and peroxisome 
proliferator-activated receptor-γ, which connects GSTs with other pathogenetic 
mechanisms, genes, and clinical conditions that include insulin resistance, diabetes 
mellitus type 2, arterial hypertension and abdominal obesity[44].

Due to the fact that GSTs play a determinative role in the detoxification of 
xenobiotics, their down- or up-regulation may obviously affect biological effects and 
metabolism of many biologically active compounds, industrials and environmental 
pollutants. Several studies have demonstrated the potency of some flavonoids to 
modify the expression of GSTs and their activities. Furthermore, real effect of 
flavonoid compounds on GSTs strongly hinge on concentration, remedy adminis-
tration duration, chemical structure of particular flavonoid, as well as on GST origin 
and isoform. To add confusion, in vitro and in vivo studies results are often 
inconsistent, incongruous or conflicting. Notwithstanding, prudential use of a 
flavonoid enriched diets, which may potentially induce GSTs are commonly beneficial, 
however the uncontrolled intake of certain flavonoids like catechins and quercetin in 
high doses as a dietary supplement may threaten health in consequence of GST 
inhibition. Moreover, combined use of certain flavonoids with drugs (acetaminophen, 
cisplatine, cyclophosphamide, and simvastatin) or xenobiotics (acrylamide, 
isocyanates polycyclic aromatic hydrocarbons, and chlorpyrifos), which are GSTs 
substrates, might have significant pharmacological and toxicological consequences[45].

GSTs genes often, demonstrate high inductivity through various stimuli of both 
abiotic and biotic origin. For example, salicylic acid (SA) showed prompt inducible 
effect on multiple GSTs. Some of the GSTs genes (GSTF2, GSTF8, GSTF10, GSTF11) are 
recognised determining SA-binding receptor proteins, though the biological relevance 
of SA binding to these GSTs needs further study[36,46-48].

Similar behavior may be observed in other genes involving in hepato-pancreatic 
conditions like angiotensin-converting enzyme gene and peroxisome proliferator-
activated receptors-γ gene[49]. We can presume, that there is little evidence of specific 
precise cellular hepatic alteration mechanisms resulted from GST enzymes 
dysfunction or corresponding genetics' dysregulations.

NONALCOHOLIC FATTY LIVER DISEASE
Due to the studies of possible difference in the distribution frequency of allelic 
variations in the GSTP1 A313G polymorphism, it has been established that G allele is 
spread significantly and more frequent in patients with nonalcoholic fatty liver disease 
(NAFLD) than in healthy individuals (χ2 = 5.69, P = 0.017) in Ukrainian population 
(Table 1)[50]. This data is consonant with the results of Hashemi et al[51], who have 
demonstrated that G allele of GSTP1 gene is a risk factor for NAFLD formation. It was 
investigated, that total bilirubin level in blood of NAFLD patients with GG genotype 
of A313G polymorphism of GSTP1 gene was higher as compared to AA genotype and 
AG genotype carriers. Presence of G allele was also associated with increased alanin-
aminotransferase activity, which was noticed to be significantly higher in NAFLD 
patients AG, and GG genotypes carriers as compared to patients with AA genotype
[52].

Pro-and anti-inflammatory cytokines and adipokines profile varies in NAFLD 
patients with different polymorphic variants of the GSTP1 gene (A313G) in particular. 
Homozygous patients with G allele are characterised by higher level of interleukin-10 
(I1-10) in the blood as compared to patients with the AA and AG genotypes, that may 
occur potentially in response to the increase in the tumor necrosis factor-α (TNF-α) 
concentration, which proved the increased activity of inflammation processes[53,54]. 
NAFLD patients were investigated with low adiponectin levels in the blood in 
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Table 1 Distribution of polymorphic variants of the A313G polymorphism of the GSTP1 gene in patients with nonalcoholic fatty liver 
disease and healthy individuals

Patients with NAFLD, n = 104 Healthy individuals, n = 45
Genotypes of the gene GSTP1

Absolute number, n % Absolute number, n %

AA 47 45, 2% 28 62, 2%

AG 42 40, 4% 16 35, 6%

GG 15 14, 4% 1 2, 2%

A-allele 136 65, 4% 72 80, 0%

G-allele 72 34, 6% 18 20, 0%

NAFLD: Nonalcoholic fatty liver disease.

comparison with healthy people[55]. Moreover, according to Li et al[56] low 
adiponectin level is associated with the progression of steatohepatitis. The adiponectin 
concentration was lower in patients with NAFLD and AG and GG genotypes than in 
those with the AA genotype, indicating a worse adipokine profile for the NAFLD 
natural course[50]. A reverse tendency has been determined for leptin, however its 
blood level was higher in NAFLD patients with AG and GG genotypes as compared to 
those with the AA genotype[50]. This elevation of the leptin content in the GSTP1 G 
allele carriers was, probably, associated with a high TNF-α concentration stimulating 
leptin production[57]. The aforementioned can prove the development of the leptin-
resistance syndrome more severe in this cohort of patients[58]. In general, these 
observations indicate the formation of adipokine imbalance in the examined patients 
with AA genotype, which is typical for patients with NAFLD[59] which causes 
elevated leptin concentration against decrease adiponectin level in the blood[60].

Deletion polymorphic variants of GSTT1 and GSTM1 genes prevalence amongst 
NAFLD patients was approximately the same as their distribution between healthy 
individuals in Ukrainian population. These data are partially different from those 
suggested by Hori et al[61] who reported higher frequency of GSTM1 null genotype in 
NAFLD patients as compared to control in the Japanese. There were not any notable 
differences in the parameters of the synthetic, detoxification, excretory liver functions 
together with activity of cytolytic and cholestatic syndromes and lipid profile in 
NAFLD patients with deletion of GSTT1 and GSTM1 genes and patients with 
functional allele of these genes[62]. It agrees with Rafiee et al[63] who also did not 
define importance contrasts in cholesterol and triglycerides plasma levels in 
individuals with different polymorphic variants of the studied genes. Interestingly, 
earlier studies of Maciel et al[64] suggested that double deletion genotypes of GSTM1 
and GSTT1 genes were associated with hypertriglyceridemia.

Elevated TNF-α level in the blood is typical for NAFLD patients as compared to 
healthy individuals[65]. Jamali et al[66] proposed an algorithm involving TNF-α for 
predicting NAFLD/non-alcoholic steatohepatitis. Importantly, that null-genotype of 
GSTT1 gene goes with higher TNF-α concentration as compared with patients having 
allele variant of GSTT1, and thereby indicate the activation of proinflammatory 
segment of cytokine profile and inflammatory processes[62]. Note worthily, TNF-α is 
one of the key factors involved in the insulin resistance, inflammation and apoptosis in 
case of NAFLD[67], thus its elevated level could be a predictor of aggravated liver 
injury in NAFLD patients with null-genotype of GSTT1 gene.

Certain peculiarities in adipokine profile were detected regarding GSTM1 genotype. 
Leptin plasma level was significantly higher in patients with null-genotype of GSTM1 
gene as compared to NAFLD patients with functional allele. This elevation of leptin 
content in null-genotype GSTM1 carriers was probably associated with a high TNF-α 
concentration that stimulates leptin production[57]. Deletion polymorphism of GSTT1 
and GSTM1 genes in patients with NAFLD was associated with lower content of 
restored glutathione, catalase activity. And in the case of carrier of zero genotype of 
GSTM1 gene; it was also with higher level of reaction products of thiobarbituric acid in 
blood as compared to patients with functional allele of the gene[68].
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DRUG INDUCED LIVER INJURY AND HEPATITIS
Prevalence of G allele of GSTP1 (A313G) gene did not differ notably in chronic 
hepatitis patients in comparison with healthy individuals in Ukrainian population, 
however, presence of G allele was associated with higher activity of cytolytic 
syndrome lower restored glutathione blood content in comparison with patients AA 
genotype carriers[69]. GSTP1 IIe/Val genotype was significantly more frequent in the 
patients with chronic hepatitis B infection and in patients with cirrhosis than in 
healthy individuals in Turkey; GSTP1 Val/Val genotype was even more frequent in 
these patients[70]. In addition, these authors denoted relation between GSTP1 gene 
polymorphism and hepatitis stage. In fact, as IIe/Val and Val/Val genotype 
frequencies increased so did the stages of the disease and tendency grow towards 
cirrhosis[70].

In our previous study, it was found that deletion genotype of GSTM1 and GSTT1 in 
patients with chronic hepatitis were representative to those in healthy individuals. Qi 
et al[71], have discovered that the genes GSTM3 and GSTP1 promoter methylation, 
which causes dysfunction of intracellular antioxidant defense system, more frequently 
occurs in patients with acute and chronic liver failure in case of hepatitis B virus, 
compared to patients with compensated viral hepatitis. Determination of methylated 
promoters of GSTP1 and GSTM3 genes can serve as a prognostic factor in the 
development of acute and chronic liver failure in these patients. It was found that 
GSTO2 mutant genotypes were increased with progression, and the degree of hepatitis 
B virus (HBV) infection and the patients had mutant GSTO2 genotypes such as (A/G, 
and G/G) were more susceptible for more severe HBV disease progression. The 
authors of the aforementioned study concluded that people with A/G and G/G 
genotype for GSTO2 are more prone to develop hepatic failure[72]. Certain investig-
ations have driven to the relation of GST gene polymorphism and drug induced liver 
injury. It was discovered almost twenty years ago, that homozygous null mutation at 
the GSTM1 gene might predispose to hepatotoxicity for drugs used for the treatment 
of tuberculosis[73]. This statement was supported in the following studies reviling 
GSTT1 homozygous null polymorphism may be a risk factor of antituberculosis drug-
induced hepatotoxicity in Caucasians[74]. Meanwhile, presence of at least one 
functional allele of GSTM1 was significantly more frequent amongst the groups with 
higher grades of liver toxicity for antituberculosis drugs in Brazilians[75]. Contrarily, 
GSTT1 and GSTM1 were not related to increased antituberculosis drug induced liver 
injury in Indian citizens[76]. By now, certain researchers[77] have linked troglitazone 
intoxication in the development of chronic diffuse liver diseases with the double-zero 
genotype GSTT1 and GSTM1 genes, considering its consequence of insufficient activity 
of detoxification defense systems, low activity of conjugation of sulfuryl groups. It has 
been shown that the zero genotype of GSTT1 gene increases the risk of drug-induced 
liver damage in particular, due to the use of isoniazid[78]. Finally, in meta-analysis, it 
was found that null GSTM1 genotype was responsible for higher susceptibility to drug 
induced liver disease related to antituberculosis medications in East Asian population, 
but not the Indians or Caucasians[79]. There were no confirmed relationships between 
null genotype of GSTT1 gene and this kind of drug induced liver disease[79]. On the 
other hand, Wu et al[80] investigated that patients with tuberculosis A allele carriers of 
GSTP1 gene (A313G) have a higher risk of anti-tuberculosis drug-induced hepato-
toxicity development.

LIVER CIRRHOSIS
With regards to the report of Burim et al[81] study of susceptibility to cirrhosis and 
pancreatitis in alcoholic, concerning the GST and cytochromes 450 genes 
polymorphism, revealed that GSTP1 Val allele carriers were at higher risk of both 
diseases. Ghobadloo et al[82] discovered the association of cryptogenic cirrhosis with 
Val/Val GSTP1 genotype which might be explained by low detoxification activity of 
protein that implicate this polymorphism as a risk factor for occurrence of the disease. 
Goncharova et al[83] showed that patients with liver cirrhosis AA genotype carriers 
have 2.5 times higher survival rate compared with the patients with the GG and AG 
genotypes of GSTP1 gene.

Khan et al[84] showed an increase in risk to alcoholic cirrhosis in patients with 
GSTM1 null genotype when compared with non-alcoholic or alcoholic controls. A 
much higher risk to alcoholic liver cirrhosis was observed in patients carrying 
combination of null genotypes of GSTM1 and GSTT1[84]. The authors of the 
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mentioned study found interaction of GSTs with variant genotype of manganese 
superoxide dismutase, which detoxifies free radicals, or cytochrome P450 2E1 that 
generates free radicals, and resulted in several fold increase in risk to alcoholic liver 
cirrhosis. Thus, conclude the possible gene-gene interaction in modulating the risk of 
the alcoholic liver cirrhosis development[84]. However, in another study from Brazil, 
no differences were found in the prevalence of the GSTM1 and GSTT1 null genotypes 
between control non-alcoholics and alcoholics with liver cirrhosis, as well as alcoholics 
without disease and alcoholics with liver cirrhosis[81]. Several older studies also have 
got different conclusions regarding the impact of GSTM1 null genotype on the 
appearance of liver cirrhosis in patients with alcohol abuse. Specifically, Harada et al
[85] in Japanese and Savolainen et al[86] in Finland found an increased risk of liver 
cirrhosis associated with the GSTM1 null genotype in chronic alcoholics. Whilst, 
Frenzer et al[87] in Caucasian population and Rodrigo et al[88] in Spanish adults have 
not reported any. Brind et al[89] have found higher prevalence of zero GSTT1 genotype 
in patients with alcoholic liver disease compared to patients who do not consume 
alcohol. Meanwhile GSTT1 null genotype was not found to vary importantly between 
liver cirrhosis related to hepatitis B infection and healthy individuals[90]. At the same 
time, patients with GSTM1 null genotype are at risk of progression of liver disease as 
the frequency of GSTM1 null genotype was found to be significantly higher in chronic 
hepatitis B, hepatitis B cirrhosis and cryptogenic cirrhosis as compared with controls
[90]. Moreover, the link between GSTM1, but not GSTT1 null genotype and 
cryptogenic cirrhosis was found in Iranian population[82]. Komuro et al[91] in their 
investigations of primary biliary cirrhosis concluded that genotypic difference of 
GSTM1 and GSTT1 did not relate to susceptibility of this disease, nevertheless serum 
titer of anti-mitochondrial antibody of GSTM1 null and GSTT1 null patients were 
significantly higher than those of GSTM1 positive and/or GSTT1 positive patients. 
Baclig et al[92] also postulated that polymorphism in GSTM1 null genotype seems to 
be associated with an increased risk of chronic liver disease amongst Filipinos.

HEPATOCELLULAR CARCINOMA
The GST null genotype has been examined to have an association with various 
malignancies including cancers of the bladder[93], gastric[94], colon[95], and lung[96]. 
K. Wu et al[97] investigated that GSTP1 313 G/G polymorphism is a strong predis-
posing risk factor for bladder cancer. Meanwhile, data regarding the role of GST gene 
polymorphism on the hepatocellular carcinoma (HCC) is sporicidal. Qu et al[98] have 
found single nucleotide polymorphism (SNPs) GSTO2 rs7085725 and GSTP1 rs4147581 
were significantly associated with the overall survival of HCC patients and suggested 
to use them alone or in combination as potential prognostic markers for HCC patients. 
Particularly, according to the author’s suggestion, SNP of GSTP1 (rs4147581) could 
have a predictive biomarker in HCC patients aged ≤ 55 years[98]. GSTM1 and GSTT1 
polymorphisms appear to be associated with a modest increase in the risk of HCC in 
Egyptian patients[99]. GSTT1 null genotype was associated with more than 2-fold 
increased risk for HCC development in patients with hepatitis associated with 
hepatitis C virus (HCV) as compared to the control group. However, GSTM1 null 
genotype was found to have a protective effect when hepatitis patients were 
considered in Indian population[100]. Meanwhile, in older study it was found that the 
GSTT1-null genotype alone did not affect risk of HCC development in HBV, but the 
GSTM1-null genotype was associated with a decreased risk for early-onset HCC[101]. 
The meta-analysis by Li et al[102], involving results of 46 related studies with more 
than 15 thousands of patients showed that both GSTM1 null genotypes and GSTT1 
null genotypes increased the risk of HCC, while GSTM1-GSTT1 dual-null genotypes 
increased the risk of HCC to a higher extend. Interestingly, during ethnicity consid-
eration, this connection was significant only for Asians, and not for Caucasians and 
Africans. In older meta-analysis by Shen et al[103] GSTM1 and GSTT1 null genotype 
was found to be associated with higher risk of HCC with a similar ethnic pattern. GST-
P1 rs1138272 (341C>T) polymorphism was found to have a protective effect on liver 
cancer development in a high-risk HCV/HBV-positive population in Caucasian 
ethnicity[104]. GST-P1 genetic polymorphisms (i.e., Ile105Val, rs1695) were not 
associated with HCC risk in Asian population, European and African[105,106]. Higher 
GSTP1 levels in tumor tissues indicated a better overall survival and disease-free 
survival for HCC patients[107]. The mentioned authors have found that GSTP1 could 
decrease p-Akt in liver cancer cell lines and may inhibit alfa-fetoprotein expression. 
GSTP1’s inhibition on cancer progression may be accomplished by arresting the cell 
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cycle at the G1/S transition in HCC cells[108]. GSTA1 TT genotype was more frequent 
in HCC than in non-HCC patients, suggesting that individuals carrying this genotype 
could be associated with 2-fold higher risk of developing HCCs[109]. GSTM1 and 
GSTT1 null genotypes are associated with an increased HCC risk in Chinese 
population with higher risk typical for double null genotype. Furthermore, in another 
meta-analysis, it was investigated that null genotype of GSTT1 was associated with 
HCC susceptibility in Asians, and both GSTT1 and GSTM1 genes deletion were 
associated with higher susceptibility. GSTP1 Ile105 Val gene polymorphism was not 
correlated with this disease, however, polymorphisms in GSTM1 and GSTT1 genes are 
not related to the incidence of HCC in a high-risk Spanish population[110]. Marahatta 
et al[111] provided the support for the difference in genotypic distribution for GSTO1*
A140D between hepatocellular carcinoma and cholangiocarcinoma.

CONCLUSION
Current review supports the position that genetic polymorphism of GST genes is 
involved in the pathogenesis of various liver diseases, specifically in non-alcoholic 
fatty liver disease, hepatitis and liver cirrhosis of different etiology and hepatocellular 
carcinoma. Certain GST gene allelic variants were proven to be associated with 
susceptibility to hepatological pathology and correlations with the natural course of 
the diseases were postulated. Still the data obtained in different studies sometimes is 
controversial and even conflicting. Thus, more investigations involving larger 
numbers of patients are needed.
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